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Introduction

Worsening of sight and blindness remain significant problems 
of general healthcare worldwide. The World Health Organization 
(WHO) estimates that worldwide there are approximately 253 
million people with impairment of sight. In 2015, 36 million were 
blind and 217 million had moderate to severe visual impairment. 
Approximately 80 % of the cases of blindness can be avoided if 
preventive measures are taken or if they are diagnosed and treated 
early [1]. Although most blind and visually impaired people live 
in low-income countries, it is important to note that blindness 
caused by eye diseases is also an important healthcare problem  

 
in Europe [2]. In the last quarter of a century, this condition has 
led researchers in medicine and biomedical engineering to the 
development of different models of visual prostheses. According to 
Fernandez et al., approximately 140 000 blind people in industrial 
countries could benefit from a bionic eye [3].

Neurotransmission in the Visual Pathway – Physi-
ology

After the impact of light on the retina, a chemical change 
occurs in the outer photoreceptor segments (the cis-retinal form 
becomes the transform). This causes their hyperpolarisation [4]. 
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Hyperpolarisation of photoreceptors during synaptic transmission 
causes the release of glutamate from the presynaptic part to the 
synaptic cleft and its subsequent binding to the receptors located 
on the membrane of the postsynaptic neuron [5]. The glutamate 
receptors are present not only in the photoreceptors but also in the 
horizontal and bipolar cells, as well as in the retinal ganglion cells 
[6]. Glutamate is bound to the receptors, which have been named 
based on their selective agonists. N-methyl-D-aspartate is a typical 
agonist for the NMDA receptors; α-amino-3-hydroxy-5-methyl-4-8 
isoxazolpropionate for the AMPA receptors, and kainate for the 
third type - the kainate receptors. AMPA and kainate receptors are 
also called non-NMDA [7].

NMDA receptors represent ion channels permeable for calcium 
ions (Ca). Under normal membrane potential, the flow of calcium 
through NMDA receptors is blocked by the magnesium (Mg) ions. 
This block can be eliminated by strong depolarisation [8]. Glutamate 
is a predominant excitation neurotransmitter in the retina and 
brain of mammals [9]. After induction, the post-synaptic excitation 
potential glutamate must instantly be removed from the synaptic 
cleft. In the mammalian central nervous system, glutamate is 
removed from the synapsis primarily by glutamate transporters, i.e. 
excitatory amino acid transporter (EAAT) and glutamate aspartate 
transporter (GLAST), as glutamate transporters to the Muller cells 
(MC) and glutamine synthetase (GS) as an enzyme converting 
glutamate to glutamine in the MCs [10,11]. In glial cells, glutamate 
is subsequently changed to glutamine. Glutamine no longer acts as 
a neurotransmitter and can thus be released back to the synapse, 
from which it is subsequently taken up by the presynaptic neuron 
that converts it back to glutamate [12]. 

To date, there is no evidence of the presence of an enzyme that 
would convert glutamate directly in the synapse [13]. Concentration 
of free glutamate in the synaptic cleft during synaptic transmission 
is about 1.1 mM, but its concentration decreases rapidly. In NMDA 
receptors, it disintegrates within 1.2 ms. However, glutamate 
dissociates more rapidly from AMPA receptors. Thus, the time 
course of free glutamate predicts that dissociation contributes 
to the breakdown of the post-synaptic flow mediated by AMPA 
receptors. Otherwise the voltage-gated channels would be opened 
[5].

Neurotransmission in the Visual Pathway – Pathol-
ogy

One of the first stimuli that led us to investigate visual pathway 
processes was the simultaneous measurement of the pattern 
electroretinogram (PERG) and the pattern visual evoked potentials 
(PVEP) in a 20-year-old healthy individual, first at intraocular 
pressure (NOT) of 15 mmHg and then following its increase to 40 
mmHg. To our surprise, neurotransmission was blocked at the level 
of the retinal ganglion cells, while PVEP changed slightly (Figure 1). 
This fact did not correspond to the current definitions of glaucoma 

consisting of impairment of the retinal ganglion cell axons with 
excavation on the optic disc and changes in the visual field. With 
the blockade of transmission on the level of the ganglion cells, 
we expected an inadequate or at least abnormal PVEP response, 
measurements were taken in 1987 [14] (Figure 1).

Figure 1: The upper curve (PERG) and the PVEP below at a normal 
IOP. The arrows show latency of the cycles, whose amplitude 
occurs by a response of the retinal ganglion cells. The lower curves 
show the status after increase of the IOP to 40mmHg [14].

Two questions remain unanswered. Why did the retinal 
ganglion cells not respond, and what happened to the central 
visual pathway when, after the blockade at the level of the retinal 
ganglion cells, we got an almost normal response in the brain? 
Why did we not notice the first changes at the level of the retinal 
ganglion cell axons, when all the previously available glaucoma 
definitions state that this is the case? Shou et al. quantitatively 
studied alpha and beta retinal ganglion cells after acute elevation 
of IOP. According to their analysis, cell density, body size, maximum 
dendritic field diameter, total dendritic length, and the number of 
dendritic bifurcation branches decreased significantly in glaucoma 
eyes compared to the healthy group. Loss of cells and shrinkage of 
dendrites in the types of alpha ganglion cells was more pronounced 
compared to the beta cells. The density of all types of cells in the 
retina and lateral geniculate body decreased in time if IOP was 
increased, with the loss of cells being more significant in the large 
cells (alpha) compared to the small (beta) cells [15].

There is only one explanation for the second question of what 
happened to the visual pathway when IOP increases. Following 
stabilisation of the binocular functions, the visual cortex is set up 
to receive a certain amount of action potentials. When this amount 
is decreased at any level from the photoreceptors up to the cortical 
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cells, we will start to find out at which level this lesion occurred by 
means of the feedback processes [16-19]. 

There are two possibilities for recovery of the action potentials 
coming to the brain to the baseline values. The first is to wash out 
a higher amount of the neurotransmitter and the other is to leave 
this neurotransmitter in the synaptic cleft for a longer time. Both 
possibilities have been experimentally proven in glaucoma. In the 
vitreous humour of glaucoma eyes of experimental animals, the 
glutamate value (27 microM) was up to 3-fold higher than in the 
control group. These values are toxic both for the layer of ganglion 
cells and for the internal plexiform layer [20].

The GLAST and GS values were increased following increase 
of the IOP in rats after 3 weeks. The number of the ganglion cells 
4-60 days following the increase of IOP was reduced by 6 to 44 % 
[21]. In addition, the glutamate transporter may begin to work in a 
reverse mode and transfer glutamate and sodium from the cell back 
to the synaptic cleft. Thus, flushed glutamate comes only in a small 
portion from the synaptic pouches and most of it comes from the 
cytosol to which it was previously drained [22]. During the long-
term effects of glutamate on non-NMDA receptors, an increase of 
the postsynaptic potential and opening of the voltage-controlled 
receptors which are normally closed by magnesium (Mg) occurs, 
which prevents Ca from entering the cell. This process occurs in all 
cells with glutamate receptors. Therefore, not only retinal ganglion 
cells but also cells in the inner core layer and photoreceptor layer 
are damaged in glaucoma [23].

Excessive calcium flow into the cell through the NMDA-voltage 
channel may induce hypoxia, hypoglycaemia, etc. Under these 
conditions, the level of glutamate in the synaptic cleft remains 
elevated for a long time, with sustained activation of the NMDA 
receptors, resulting in the intracellular calcium concentrations 
which are cytotoxic. Hence, this process is typical not only for 
impairment caused by glaucoma [24]. By glutamate binding, the 
NMDA receptor begins to release calcium into the cell. This can 
have a double effect on a cell. Under physiological conditions, it 
can provide the signal needed for survival of the nerve cell, and 
by contrast, in pathological conditions, it can have an excitotoxic 
effect. This is because excessive activation of glutamate receptors 
has many detrimental effects on the cell, including reduced ability 
to buffer the influent calcium, produce oxygen radicals, activate 
nitric oxide synthesis which may lead to cytoskeletal degradation 
and excessive activation of calcium-dependent enzymes [25]. 

For these reasons, free cytosolic calcium needs to be drained, 
which is ensured by the mitochondria and partly by the endoplasmic 
reticulum. In particular, mitochondria are important for maintaining 
a low concentration of cytosolic calcium and their dysfunction can 
lead to cell death by disrupting calcium homeostasis, releasing 
proapoptotic factors, or increasing production of oxygen radicals 
[26]. Excessive production of oxygen radicals leads to the formation 

of oxidative stress, which causes damage to nucleic acids, proteins, 
lipids, and can lead to the opening of mitochondrial channels, 
which in turn leads to the formation of additional oxygen radicals, 
energetic failure and release of pro-apoptotic factors such as 
cytochrome c into the cytoplasm. Oxidative stress is a major factor 
in the pathological neuronal damage involved in both acute and 
chronic central nervous system damage in many neurodegenerative 
diseases [25]. 

Other pro-apoptotic factors have been found which are released 
by the massive entry of calcium into the cell, such as the p38 MAP 
kinase pathway or the c-Jun N-terminal kinase. Free cytosolic 
calcium can also induce apoptosis by activating calcineurin and 
calpain, which are calcium-dependent apoptotic proteases [27].

When signal pathways which lead to the death of a nerve cell 
are activated, the energy reserves of the cell decide on the mode 
of cell death. If the cell has enough energy, a cascade of reactions 
leading to programmed cell death - apoptosis - can be triggered 
during which the cell morphology, condensation and fragmentation 
of the DNA, cytoskeletal proteolysis, and exposure of other antigens 
to the cell surface occur. A neuron is therefore removed, in order 
to minimise the inflammatory reaction, and its removal by glial 
cells is facilitated. However, if a cell has a lack of energy to cause 
programmed cell death, it dies of necrosis.

However, enough energy does not only decide on the mechanism 
of cell death, but also on whether it occurs at all, because if the energy 
is deficient, the concentration of glutamate that would not normally 
be excitotoxic can cause it. This is because neurons and glial cells 
removing glutamate from the synapse need sufficient energy [28-
30]. However, neurons are not passive, and they resist excitotoxicity 
by several mechanisms. One of these is the removal of glutamate 
from the synapse and calcium from cytosol. Another mechanism 
is to ensure more energy to the nervous system, which is done by 
incorporating more glucose transporters into the membranes, or by 
using lactate as a source of energy. The energy crisis is signalled by, 
among other things, an increased amount of adenosine produced 
by the consumption of adenosine triphosphate. Adenosine may 
function as a retrograde neurotransmitter and prevent the release 
of additional glutamate. Thus, it acts similarly to the intracellular 
feedback loops which provide inhibition of a receptor, e.g. with 
increasing concentration of the cytosolic calcium, glutamate, 
and protons. A defensive hyperpolarisation of neurons occurs by 
means of the potassium channels, whose opening is triggered by 
ATP depletion or an excess of cytosolic calcium. In addition, the 
synthesis of antioxidative oxygen enzymes destroying the oxygen 
radicals which develop during excitotoxicity (Sapolsky, 2000) may 
be increased [31].

Whether activation of the NMDA receptor results in excitotoxicity 
or neuroprotection is also probably influenced by its localisation 
in addition to the stimulation intensity, since NMDA receptors 
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may occur both synaptically and extrasynaptically. Activation of 
the synaptic NMDA receptors appears to have a predominantly 
neuroprotective effect, while activation of extrasynaptic NMDA 
receptors triggers cell death signalling pathways [32]. 

As mentioned above, glutamate is the major excitatory 
neurotransmitter in the vertebrate brain and therefore it is 
necessary to maintain its levels in the physiological range (9). Under 
normal conditions, the concentration of glutamate in the synaptic 
cleft may increase up to 1 mM, from which it is then taken up in 
milliseconds and its concentration is again reduced [5]. However, if 
its amount in the vicinity of the synaptic cleft cannot be reduced or 
is even exceeded, the neurons undergo apoptosis or necrosis [33]. 
Excitotoxicity as such was first described by Olney [9]. It involves 
excessive activation of glutamate receptors in the CNS. Glutamate 
neurotoxicity caused by NMDA receptor activation was suggested 
only in a later study [24]. After intense activation of the NMDA 
receptors, glutamate excess for the neurons may be toxic in several 
acute injuries, including stroke [34] or epilepsy [35].

The Most Common Ophthalmological Diseases for 
Which a Bionic Eye is Indicated

As mentioned above, any lesion of the nerve cells in the visual 
pathway can damage not only the cellular nerve structures located 
horizontally, but also vertically. Another important finding resulting 
from this information, as well as from the visual pathway anatomy, 
is that unilateral lesions also cause damage to contralateral nerve 
structures [36-38]. Therefore, it is not possible to predict the 
improvement of visual functions to usable values when implanting 
visual neuroprothesis.

As the bionic eye is most commonly indicated in patients with 
retinitis pigmentosa (RP)and age-related macular degeneration 
(AMD), we focus mainly on these two diagnostic groups. A 

prerequisite for the effectiveness of this system is the preservation 
of the integrity of the middle and inner retinal structures, the visual 
pathway and the subcortical and cortical centres in the brain [39].

RP is a disease that primarily affects the rods and cones and 
retinal pigment epithelium located beneath. The inner core 
and plexiform layers, ganglion cells and their fibres undergo 
degeneration and are replaced by gliotic tissue. These changes may 
be visible in the later stage of the disease [40].

Electrophysiological findings in sight show that, already in 
the early phases of the disease, the alteration affects not only the 
rods but also the macular retinal structures including the ganglion 
cells. This also results in impairment of the visual nerve and visual 
cortex in the brain. Electrophysiological findings of impairment of 
the visual pathway have also been verified by tractography of the 
brain [41-42].

Medical Findings of FMRI in Various Diseases

Retinitis Pigmentosa

A male (63 years) with RPof both eyes had VARE: 0.2 naturally, 
VALE: 0.3 naturally. Correction did not improve the sight. Perimetric 
examination showed a concentric narrowing of the visual fields to 
10 and 5 degrees, respectively. Electrophysiological examination 
(according to ISCEV methodology) showed bilaterally missing 
response. Both in ERG, PERG and PVEP. At the above stated visual 
functions, fMRI following stimulation of each eye separately and both 
eyes concurrently did not find any brain activity [43]. Functional 
MRI examinations were carried out on the Philips Achieva 3T TX 
MR system (Philips Healthcare, Eindhoven, Netherlands) with 
a magnetic field strength of 3 Tesla, using the blood oxygen level 
dependent (BOLD) contrast. A standard 32-channel head coil was 
used and each measurement was performed with gradient-echo 
echo-planar imaging sequence.

Figure 2: FMRI following stimulation of both eyes found no activity of the visual brain cortex (p = 0.05 FWE).
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(TR/TE = 3000/30 ms, spatial resolution of 2x2x2 mm3). 
Optical stimulation was performed by a black/white checkerboard 
alternated with its negative image with a frequency of 2 Hz. The 
visual size of the black and white checkerboard was 25.8 × 16.2 
degrees. The measurements consisted of a sequence of five 
30-second active phase periods and five resting periods of the same 
length (each of 10 dynamic scans). During the resting phase, a static 
crosshair situated in the centre of the visible field was projected 
for the view fixation. In total, every measurement included 100 
dynamic scans and took 5 minutes. Each eye was examined by 
means of separate fMRI measurement (LE, RE) and then both eyes 
together (LE+RE). Evaluation of the task-related fMRI was done 
using General Linear Model (GLM) in SPM12. After standard pre-
processing (Realignment, Normalisation to MNI space, smoothing 
to 6x6x6 mm3), GLM statistic with final p=0.05 with Family Wise 
Error (FWE) correction was done (Figure 2).

Castaldi et al. [44,45]. Machado et al. found alteration of fMRI 

in RP and others confirmed decrease of visual cortex volume in 
patients with RP [46]. (Figure 2).

Age-related Macular Degeneration (AMD)

In AMD, the impairment of the photoreceptors (cones) causes 
decrease of the retinal ganglion cells. It was found that the number 
of retinal ganglion cells is significantly lower in AMD compared to 
the control eyes. The loss is higher in the wet form of AMD compared 
to geographic atrophy (GA). Compared to the control eyes, a loss of 
the retinal ganglion cells was seen in GA of up to 30.7 % [47]. In 
the wet form of AMD it was reported at 47 % [48]. Isolated central 
lesions in AMD lead to impairment of the visual cortex in the brain. 

We examined 10 patients with the wet form of AMD (9 females 
and 1 male), with an average age of 74.7 years (58-85 years) at 
different stages of bilateral disability. The patients did not suffer 
from other ophthalmological or neurological diseases. Using fMRI, 
we found a significant decrease of voxel activity compared to the 
control group (p=0.024) [49] (Figure 3 & 4).

Figure 3: Activity of the visual centre in the brain in a healthy 50-year-old female. VARE: 1.0 naturally, VALE: 1.0 naturally. Sagittal section 
(A), (B) transverse section and coronal section (C)following concurrent stimulation of both eyes show normal fMRI values of 6815 voxel (usual 
correct threshold p=0.05 with FWE correction). Both eyes were stimulated simultaneously.

Figure 4: Activity of the visual centre in the brain in a healthy 54-year-old female with AMD, VARE: 0.04 naturally, VALE 0.03 naturally. Sagittal 
section (A), (B) transverse section and coronal section (C) show a significant decrease of the fMRI activity (2 630 voxel, the usual correct 
threshold p=0.05 with FWE correction) [46]. Both eyes were stimulated simultaneously.
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Hypertension Glaucoma

Hypertensive glaucoma damages the retinal ganglion cells and 
consequently the visual pathways, including the visual headquarters 
of the brain. Similarly, lower retinal structures (bipolar cells and 
photoroceptors) are damaged. We examined 9 patients with 
different stages of high-tension glaucoma (3 females aged 41-65 
and 6 males aged 40-73) by fMRI. The examination was performed 
according to the above methodology, but we used black and white 
hemipol for stimulation, followed by the same examination with 
blue-yellow stimulation. Both eyes were stimulated simultaneously. 
The sum of sensitivities in the homolateral halves of the visual fields 
(ranging from 0-22 degrees, see table I) was compared to the extent 
of fMRI contralateral activity of the visual cortex. This group was 
compared with a group of eight healthy subjects (3 females aged 
23-46 and 5 males aged 23-65).

The resulting correlation coefficient between the right half of 
the visual field and fMRI activation extent on the left was 0.667 
(p< 0.05). The correlation coefficient between the left halves of the 
visual fields and fMRI activation on the right was 0.767 with p< 
0.016 [50].

The mean value of the difference in the number of activated 
voxels using the BW vs. YB stimulation is 59 % for glaucoma 
patients while for the healthy controls it is only 2 %. Statistical 
maps of BW>YB and BW<YB differences for the patients and 
controls were thresholded at an uncorrected threshold of p=0.001 
at individual level (for each subject) and the numbers of voxels 
were statistically compared between all groups using t-test. While 
the BW>YB difference between the control group and the patients 
differed by the statistically significant 1.606 voxels (p=0.039), no 
difference was found for BW<YB (p=0.18) [50]. (Table 1).

Table 1: Examination results after black and white stimulation.

Average [dB] (sum of sensitivities) Median Standard deviation

Right halves of visual fields

Control group: 2200.3 2196.5 59.6

Patients: 1367.2 1493 532.5

Right halves of visual fields

Control group: 2165.8 2176 69.5

Patients: 1396.6 1615 611.2

fMRI of the left occipital hemisphere (voxel numbers)

Control group: 4181.5 3445.5 2366

Patients: 2981.7 2550 1531.2

fMRI of the right occipital hemisphere (voxel numbers)

Control group: 4414.6 4093 2280.8

Patients: 2995.6 2232 1983.6

Even with these experiments we have shown that with the 
progression of glaucoma there is an alteration of the cortical 
headquarters in the brain. This implies that retinal disorder, whether 
at the level of photoreceptors or ganglion cells, leads to damage if 
visual centers in the brain, particularly in PDR. This disease is most 
often indicated for the implantation of visual neuroprostheses.

Bionic Eye

Currently, four systems of bionic eye have received permission 
for launch on the European and US markets. Many others 
have undergone preclinical and clinical trials which reflect the 
established safety profile for sustained stimulation. This progress 
points to an effort to assist blind patients in their hopes of real and 
measurable aid [51]. In the last quarter of a century, attention has 
been paid to retinal neuroprostheses with active stimulation (with 
an external source of energy). 

This is a small camera system, placed in glasses, that transmits 
the captured information to a video chip. This video chip translates 
the information into electrical voltage changes and transmits these 

to a retinal implant consisting of a certain number of electrodes 
to stimulate the retinal cells. Photodiodes built directly into the 
microchip can be used instead of the camera. Even those require 
an external source of energy. The microchip with electrodes can be 
implanted epiretinally, subretinally or suprachoroidally. Similarly, 
the axons of these cells may also be stimulated by electrodes placed 
in the optic nerve sheath, or even in the lateral geniculate body, 
which may be stimulated by deep electrodes, or more recently by a 
cluster of microelectrodes, or in the visual cortex by surface or deep 
electrodes, according to Philip et al. [52]. The most common types 
of epiretinal prostheses include the Argus II Retinal Prosthesis 
System. The chip consists of 60 microelectrodes which cover 20 
degrees of the visual field. The best visual acuity was achieved in 
a patient with a decrease of visual acuity 20/1260 (0,016). When 
Argus II was used, the visual acuity was improved to 20/1000 (0,02) 
[53,54]. Other epiretinal systems include the Intelligent Retinal 
Implant System II (IRIS II) [55-57], EPI-RET3 Retinal Implant 
System [58]. These systems can theoretically be disadvantageous, 
as they rule out processing of the electric voltage changes in the 
bipolar, horizontal and amacrine and ganglion cells. I deliberately 
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use the term “theoretically” because, as stated before, vertical 
damage occurs in the photoreceptor lesions Therefore, a complex 
processing of the electrical changes in the retina is insufficient in 
advanced dystrophies. A Subretinal Chip is placed between the 
pigment epithelium and photoreceptors. It detects light, that is then 
transferred to the electrical potential and this is delivered to the 
retinal neurons. This system includes the Boston Retinal Implant 
Project (BRIP) [59], Artificial Silicon Retina [60,61], Alpha IMS 
and AMS [39,62], Photovoltaic Retinal Implant (PRIMA) [63-65].

Suprachoroidal Prostheses

The picture detects the chip, or the processed image detected 
by the camera is brought to it. The chip alone is implanted 
suprachoroidal because of the minimal iatrogenic impairment of 
the retina. These systems include Bionic Vision Australia (BVA) 
[66-71], Suprachoroidal–transretinal Stimulation [72-75].

Conclusion

Pathophysiology of neurotransmission in the visual pathway 
does not, in theory, allow for the successful use of a bionic eye. 
Therefore, the direction of development should be pointed towards 
a different method.
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